3.1690 \(\int \frac{(a^2+2 a b x+b^2 x^2)^{3/2}}{(d+e x)^{9/2}} \, dx\)

Optimal. Leaf size=204 \[ -\frac{2 b^3 \sqrt{a^2+2 a b x+b^2 x^2}}{e^4 (a+b x) \sqrt{d+e x}}+\frac{2 b^2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)}{e^4 (a+b x) (d+e x)^{3/2}}-\frac{6 b \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^2}{5 e^4 (a+b x) (d+e x)^{5/2}}+\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^3}{7 e^4 (a+b x) (d+e x)^{7/2}} \]

[Out]

(2*(b*d - a*e)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*e^4*(a + b*x)*(d + e*x)^(7/2)) - (6*b*(b*d - a*e)^2*Sqrt[a^
2 + 2*a*b*x + b^2*x^2])/(5*e^4*(a + b*x)*(d + e*x)^(5/2)) + (2*b^2*(b*d - a*e)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/
(e^4*(a + b*x)*(d + e*x)^(3/2)) - (2*b^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^4*(a + b*x)*Sqrt[d + e*x])

________________________________________________________________________________________

Rubi [A]  time = 0.0634645, antiderivative size = 204, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.067, Rules used = {646, 43} \[ -\frac{2 b^3 \sqrt{a^2+2 a b x+b^2 x^2}}{e^4 (a+b x) \sqrt{d+e x}}+\frac{2 b^2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)}{e^4 (a+b x) (d+e x)^{3/2}}-\frac{6 b \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^2}{5 e^4 (a+b x) (d+e x)^{5/2}}+\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^3}{7 e^4 (a+b x) (d+e x)^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a^2 + 2*a*b*x + b^2*x^2)^(3/2)/(d + e*x)^(9/2),x]

[Out]

(2*(b*d - a*e)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*e^4*(a + b*x)*(d + e*x)^(7/2)) - (6*b*(b*d - a*e)^2*Sqrt[a^
2 + 2*a*b*x + b^2*x^2])/(5*e^4*(a + b*x)*(d + e*x)^(5/2)) + (2*b^2*(b*d - a*e)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/
(e^4*(a + b*x)*(d + e*x)^(3/2)) - (2*b^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^4*(a + b*x)*Sqrt[d + e*x])

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}}{(d+e x)^{9/2}} \, dx &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \frac{\left (a b+b^2 x\right )^3}{(d+e x)^{9/2}} \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \left (-\frac{b^3 (b d-a e)^3}{e^3 (d+e x)^{9/2}}+\frac{3 b^4 (b d-a e)^2}{e^3 (d+e x)^{7/2}}-\frac{3 b^5 (b d-a e)}{e^3 (d+e x)^{5/2}}+\frac{b^6}{e^3 (d+e x)^{3/2}}\right ) \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac{2 (b d-a e)^3 \sqrt{a^2+2 a b x+b^2 x^2}}{7 e^4 (a+b x) (d+e x)^{7/2}}-\frac{6 b (b d-a e)^2 \sqrt{a^2+2 a b x+b^2 x^2}}{5 e^4 (a+b x) (d+e x)^{5/2}}+\frac{2 b^2 (b d-a e) \sqrt{a^2+2 a b x+b^2 x^2}}{e^4 (a+b x) (d+e x)^{3/2}}-\frac{2 b^3 \sqrt{a^2+2 a b x+b^2 x^2}}{e^4 (a+b x) \sqrt{d+e x}}\\ \end{align*}

Mathematica [A]  time = 0.0632568, size = 119, normalized size = 0.58 \[ -\frac{2 \sqrt{(a+b x)^2} \left (3 a^2 b e^2 (2 d+7 e x)+5 a^3 e^3+a b^2 e \left (8 d^2+28 d e x+35 e^2 x^2\right )+b^3 \left (56 d^2 e x+16 d^3+70 d e^2 x^2+35 e^3 x^3\right )\right )}{35 e^4 (a+b x) (d+e x)^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + 2*a*b*x + b^2*x^2)^(3/2)/(d + e*x)^(9/2),x]

[Out]

(-2*Sqrt[(a + b*x)^2]*(5*a^3*e^3 + 3*a^2*b*e^2*(2*d + 7*e*x) + a*b^2*e*(8*d^2 + 28*d*e*x + 35*e^2*x^2) + b^3*(
16*d^3 + 56*d^2*e*x + 70*d*e^2*x^2 + 35*e^3*x^3)))/(35*e^4*(a + b*x)*(d + e*x)^(7/2))

________________________________________________________________________________________

Maple [A]  time = 0.184, size = 132, normalized size = 0.7 \begin{align*} -{\frac{70\,{x}^{3}{b}^{3}{e}^{3}+70\,{x}^{2}a{b}^{2}{e}^{3}+140\,{x}^{2}{b}^{3}d{e}^{2}+42\,x{a}^{2}b{e}^{3}+56\,xa{b}^{2}d{e}^{2}+112\,x{b}^{3}{d}^{2}e+10\,{a}^{3}{e}^{3}+12\,d{e}^{2}{a}^{2}b+16\,a{b}^{2}{d}^{2}e+32\,{b}^{3}{d}^{3}}{35\, \left ( bx+a \right ) ^{3}{e}^{4}} \left ( \left ( bx+a \right ) ^{2} \right ) ^{{\frac{3}{2}}} \left ( ex+d \right ) ^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(9/2),x)

[Out]

-2/35/(e*x+d)^(7/2)*(35*b^3*e^3*x^3+35*a*b^2*e^3*x^2+70*b^3*d*e^2*x^2+21*a^2*b*e^3*x+28*a*b^2*d*e^2*x+56*b^3*d
^2*e*x+5*a^3*e^3+6*a^2*b*d*e^2+8*a*b^2*d^2*e+16*b^3*d^3)*((b*x+a)^2)^(3/2)/e^4/(b*x+a)^3

________________________________________________________________________________________

Maxima [A]  time = 1.26868, size = 198, normalized size = 0.97 \begin{align*} -\frac{2 \,{\left (35 \, b^{3} e^{3} x^{3} + 16 \, b^{3} d^{3} + 8 \, a b^{2} d^{2} e + 6 \, a^{2} b d e^{2} + 5 \, a^{3} e^{3} + 35 \,{\left (2 \, b^{3} d e^{2} + a b^{2} e^{3}\right )} x^{2} + 7 \,{\left (8 \, b^{3} d^{2} e + 4 \, a b^{2} d e^{2} + 3 \, a^{2} b e^{3}\right )} x\right )}}{35 \,{\left (e^{7} x^{3} + 3 \, d e^{6} x^{2} + 3 \, d^{2} e^{5} x + d^{3} e^{4}\right )} \sqrt{e x + d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(9/2),x, algorithm="maxima")

[Out]

-2/35*(35*b^3*e^3*x^3 + 16*b^3*d^3 + 8*a*b^2*d^2*e + 6*a^2*b*d*e^2 + 5*a^3*e^3 + 35*(2*b^3*d*e^2 + a*b^2*e^3)*
x^2 + 7*(8*b^3*d^2*e + 4*a*b^2*d*e^2 + 3*a^2*b*e^3)*x)/((e^7*x^3 + 3*d*e^6*x^2 + 3*d^2*e^5*x + d^3*e^4)*sqrt(e
*x + d))

________________________________________________________________________________________

Fricas [A]  time = 1.54083, size = 329, normalized size = 1.61 \begin{align*} -\frac{2 \,{\left (35 \, b^{3} e^{3} x^{3} + 16 \, b^{3} d^{3} + 8 \, a b^{2} d^{2} e + 6 \, a^{2} b d e^{2} + 5 \, a^{3} e^{3} + 35 \,{\left (2 \, b^{3} d e^{2} + a b^{2} e^{3}\right )} x^{2} + 7 \,{\left (8 \, b^{3} d^{2} e + 4 \, a b^{2} d e^{2} + 3 \, a^{2} b e^{3}\right )} x\right )} \sqrt{e x + d}}{35 \,{\left (e^{8} x^{4} + 4 \, d e^{7} x^{3} + 6 \, d^{2} e^{6} x^{2} + 4 \, d^{3} e^{5} x + d^{4} e^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(9/2),x, algorithm="fricas")

[Out]

-2/35*(35*b^3*e^3*x^3 + 16*b^3*d^3 + 8*a*b^2*d^2*e + 6*a^2*b*d*e^2 + 5*a^3*e^3 + 35*(2*b^3*d*e^2 + a*b^2*e^3)*
x^2 + 7*(8*b^3*d^2*e + 4*a*b^2*d*e^2 + 3*a^2*b*e^3)*x)*sqrt(e*x + d)/(e^8*x^4 + 4*d*e^7*x^3 + 6*d^2*e^6*x^2 +
4*d^3*e^5*x + d^4*e^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b**2*x**2+2*a*b*x+a**2)**(3/2)/(e*x+d)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.22615, size = 262, normalized size = 1.28 \begin{align*} -\frac{2 \,{\left (35 \,{\left (x e + d\right )}^{3} b^{3} \mathrm{sgn}\left (b x + a\right ) - 35 \,{\left (x e + d\right )}^{2} b^{3} d \mathrm{sgn}\left (b x + a\right ) + 21 \,{\left (x e + d\right )} b^{3} d^{2} \mathrm{sgn}\left (b x + a\right ) - 5 \, b^{3} d^{3} \mathrm{sgn}\left (b x + a\right ) + 35 \,{\left (x e + d\right )}^{2} a b^{2} e \mathrm{sgn}\left (b x + a\right ) - 42 \,{\left (x e + d\right )} a b^{2} d e \mathrm{sgn}\left (b x + a\right ) + 15 \, a b^{2} d^{2} e \mathrm{sgn}\left (b x + a\right ) + 21 \,{\left (x e + d\right )} a^{2} b e^{2} \mathrm{sgn}\left (b x + a\right ) - 15 \, a^{2} b d e^{2} \mathrm{sgn}\left (b x + a\right ) + 5 \, a^{3} e^{3} \mathrm{sgn}\left (b x + a\right )\right )} e^{\left (-4\right )}}{35 \,{\left (x e + d\right )}^{\frac{7}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(9/2),x, algorithm="giac")

[Out]

-2/35*(35*(x*e + d)^3*b^3*sgn(b*x + a) - 35*(x*e + d)^2*b^3*d*sgn(b*x + a) + 21*(x*e + d)*b^3*d^2*sgn(b*x + a)
 - 5*b^3*d^3*sgn(b*x + a) + 35*(x*e + d)^2*a*b^2*e*sgn(b*x + a) - 42*(x*e + d)*a*b^2*d*e*sgn(b*x + a) + 15*a*b
^2*d^2*e*sgn(b*x + a) + 21*(x*e + d)*a^2*b*e^2*sgn(b*x + a) - 15*a^2*b*d*e^2*sgn(b*x + a) + 5*a^3*e^3*sgn(b*x
+ a))*e^(-4)/(x*e + d)^(7/2)